不锈钢因其良好的力学性能、耐腐蚀性和生物相容性[1-2],被广泛应用于植入材料和医疗器械领域[3]。然而,在人体生理环境中,Cl−的侵蚀[4]易诱发不锈钢医疗器械局部点蚀[5],该过程不仅会加速金属离子的释放[6],还会导致纤维组织坏死和过敏反应发生[7-8],从而严重制约了不锈钢作为医用材料的长期应用。
为了预防和减缓不锈钢的腐蚀,向涂层体系中添加微/纳米胶囊是一种有效的自修复方法[9],该方法有助于修复微裂纹或机械损伤。微胶囊以成膜材料为壳材[10],以可分散的固体或液体为核芯[11],形成核壳结构。一旦涂层中出现裂纹,外力作用下破裂的微胶囊可通过毛细作用[12]释放核芯至损伤部位,实现微裂纹的修复和填充。桐油是一种环境友好型材料,其长链不饱和脂肪酸构成的高度不饱和共轭体系可引发基团的快速聚合[13],且无需添加催化剂[14-15],仅通过空气中氧气的氧化作用[16]即可形成致密的固体膜[17]。此外,桐油热稳定性良好[18]且黏度低[19],满足对核芯的技术要求。海藻酸钠是一种天然的多糖分子聚合物,由不同数量的葡萄糖醛酸和甘露酸酯单体共聚而成。当添加钙离子时,葡萄糖醛酸上的钠离子与钙离子发生置换,同时醛酸基团相互叠加,使氧原子发生螯合作用形成海藻酸链,链之间相互作用最终形成稳定的三维网络结构[20]。海藻酸钙凭借其不溶性网络凝胶特性[21],可形成具有优异稳定性的薄膜[22],完全符合对壳材性能的要求。
本研究中,将桐油与海藻酸钙制备成核壳结构,应用到不锈钢表面涂层中,制备具有良好耐磨损和长效耐腐蚀性能的涂层。通过摩擦磨损测试和电化学阻抗谱测试,评估该涂层的耐摩擦性能和耐腐蚀性能。
1 试验方法 1.1 不锈钢基体预处理试验选用的基体材料为1RK91马氏体不锈钢。使用DK
微胶囊的制备采用原位乳液聚合法[23],该制备方法简单、便捷,且可以控制胶囊的尺寸和壳的厚度。原位乳液聚合法步骤如下:首先,将3 g医用桐油加入200 mL去离子水中后边搅拌边缓慢加入2%质量分数的聚乙烯醇(polyvinyl alcohol,PVA)作乳化剂,以1 000 r/min的转速搅拌30 min,形成均匀的水包油乳液;接着,在20 mL水包油乳液中先加入1%质量分数的海藻酸钠,再滴加3%质量分数的氯化钙,并用磁力搅拌器搅拌均匀。壳材逐渐在核芯表面沉积并发生交联反应,反应完成后用去离子水清洗、过滤,并在80 ℃下干燥24 h,得到微胶囊。其中,桐油和PVA购自阿拉丁,海藻酸钠和氯化钙购自国药集团化学试剂有限公司。
1.3 含微胶囊自修复涂层的制备制备含微胶囊的自修复涂层分为两步:(1)以3−甲基丙烯酸酯三甲氧基硅烷[3-(trimethoxysilyl)propyl methacrylate,TMSM]和正硅酸乙酯(tetraethoxysilane,TEOS)为原料,制备有机−无机复合硅凝胶基质。将TMSM与2%质量分数的过氧化苯甲酰(benzoyl peroxide,BPO)混合均匀得混合溶液A后,按混合溶液A和TEOS物质的量比为1∶1加入TEOS中,得混合溶液B。然后将混合溶液B加入到5 mL 浓度为0.01 mol/L的盐酸与20 mL 质量分数为50%的甲醇(methyl alcohol,MeOH)的混合溶液中,以240 r/min的转速搅拌1 h,并逐渐加水促进TMSM和TEOS水解、缩合,直至形成透明的均匀硅凝胶。(2)在室温下将干燥后的微胶囊分别以0%、5%、15%和25%的质量分数加入到步骤(1)制备的硅凝胶基质中,以240 r/min的转速搅拌2 min。将预处理好的不锈钢样品浸入含微胶囊的硅凝胶中1 min,然后以2 cm/min的速率垂直提取。含涂层的不锈钢样品先在室温下干燥12 h,再在50℃下固化24 h。TMSM购自泰坦科技有限公司,TEOS、BPO、盐酸和MeOH均购自国药集团化学试剂有限公司。
1.4 纳米微胶囊表征通过傅里叶变换红外光谱仪(Fourier transform infrared spectrometer,FT-IR)测试微胶囊结构。FT-IR测试时以 KBr 粉末压片作为背景,扫描范围为 4 000~400 cm−1。采用扫描电子显微镜(scanning electron microscope,SEM)观察不同微胶囊的表面形貌及涂层表面愈合情况。使用热重分析仪(thermal gravimetric analyzer,TGA)在50~600 ℃内测量桐油、海藻酸钙和微胶囊的TGA曲线。
1.5 摩擦磨损性能测试在室温下用ZNW-500摩擦试验机进行摩擦磨损测试,分析添加微胶囊涂层的不锈钢样品的自润滑性能,测试时间为300 s,载荷为30 N。每次测试前,球状摩擦副用乙醇(ethyl alcohol,EtOH)清洗并用无尘纸擦干。
1.6 耐腐蚀性能测试采用电化学工作站完成所有电化学实验。电化学阻抗谱(electrochemical impedance spectroscopy,EIS)测试在开路电压(open circuit potential,OCP)下进行,交流信号振幅为10 mV,频率范围为10−2~105 Hz。表面划有长1 cm、宽10 μm十字划痕(深度至不锈钢板表面)并在模拟体液中浸泡一定时间后的不锈钢试样用来测试并评估微胶囊涂层的自修复性能。
2 结果与讨论 2.1 微胶囊表征微胶囊的形貌如图1所示。图1(a)为微胶囊低倍形貌。由图1(a)可知:微胶囊呈球形;微胶囊表面粗糙不平整,没有明显的缺陷和孔洞。球形形状使微胶囊的储存容量最优,且易于分散至涂层中;海藻酸钙颗粒原位沉积使微胶囊表面粗糙不平整,粗糙表面的微胶囊与涂层之间具有良好的结合。图1(b)为微胶囊高倍形貌。由图1(b)可知,所制备的微胶囊呈核壳结构,壳层厚度约为90 nm,壳层内表面光滑致密。在无外界破环情况下,这种致密的壳层可作包覆屏障,以防止桐油与氧气发生反应。
|
图 1 微胶囊形貌 Fig. 1 Morphologies of the microcapsule |
为了更好地了解所制备的微胶囊的化学结构,对桐油、海藻酸钙和微胶囊进行了FT-IR测试,结果如图2所示。海藻酸钙在3 000~3 700 cm−1出现宽峰是因为―OH与氢键的叠加作用,3 432 cm−1处为―OH的伸缩振动峰,2 928 cm−1处为饱和C―H的伸缩振动峰,1 630 cm−1和1 420 cm−1处分别对应―COO―基团的不对称和对称伸缩振动峰,1 090 cm−1处为吡喃环上C―O和C―C的伸缩振动峰,1 030 cm−1处为C―OH的伸缩振动峰。桐油在3 012 cm−1处为共轭双键中C―H的伸缩振动峰,2 926 cm−1和2 855 cm−1处为甲基或亚甲基中C―H的伸缩振动峰,1 745 cm−1处为酯基中C=O的伸缩振动峰,1 466 cm−1处为亚甲基中C―H的伸缩振动峰,1 376、991、846 cm−1处为共轭双键中C―H的面内弯曲振动峰。上述所有特征峰均能在微胶囊的光谱中得到全面反映,这有力地证实了桐油表面成功地包覆了海藻酸钙。
|
图 2 桐油、海藻酸钙及微胶囊的FT-IR图 Fig. 2 FT-IR spectra of the tung oil, calcium alginate and microcapsule |
微胶囊的热稳定性对其实际应用和保存有很大的影响。因此,采用TGA测定了桐油、海藻酸钙和微胶囊的热稳定性,见图3。桐油是一种热稳定性良好的材料,在240 ℃以下几乎没有质量损失,质量损失速率最高在390 ℃处,此时桐油中部分共轭双键转变为非共轭双键,易分解成二氧化碳和水,热稳定性降低[24]。海藻酸钙质量损失速率最高在240 ℃处,这归因于海藻酸钙多糖分子的热分解和海藻酸钙中大部分糖苷键发生断裂。多糖分子单体发生分解时,随着C―O和 C―C键的破裂,最终形成多核芳香族和石墨碳结构[25]。微胶囊和海藻酸钙的质量损失趋势相似,质量损失速率在320℃处达到最高,表明微胶囊具有良好的热稳定性。本文通过丙酮萃取法测得微胶囊中桐油质量分数约为81.6%。而桐油正是涂层实现良好自润滑和自修复性能的关键。
|
图 3 桐油、海藻酸钙及微胶囊的TGA曲线 Fig. 3 TGA curves of the tung oil, calcium alginate and microcapsule |
耐磨性是材料抵抗磨损的能力,通常通过磨损深度来衡量。本文研究了微胶囊涂层在30 N、300 s条件下的摩擦性能。从图4(a)的摩擦因数和图4(b)的磨损深度可以看出,加入微胶囊有效地减小了涂层的摩擦因数和磨损深度。当微胶囊质量分数为15%时,其摩擦因数和磨损深度均最小,依次为0.32和0.35 mm。这是由于,在摩擦力作用下桐油从破裂的微胶囊中释放,使磨擦表面逐渐形成了一层具有减摩、耐磨的润滑层[26]。此外,海藻酸钙壳体的磨屑也可以作为固体润滑剂混入桐油中[27],从而提高涂层的耐磨性。
|
图 4 不同质量分数微胶囊涂层的摩擦因数和磨损深度 Fig. 4 Friction coefficients and wear depths of the microcapsule coatings with different mass fraction |
不同质量分数微胶囊涂层的摩擦磨损表面SEM图如图5所示。由图5可知:0%质量分数微胶囊涂层摩擦磨损后表面较为粗糙,5%质量分数微胶囊涂层因所含桐油不足,摩擦磨损后表面出现粗糙磨屑和较深犁沟,自润滑效果较差;15%质量分数微胶囊涂层因所含桐油相对充足,摩擦磨损后表面相对光滑;25%质量分数微胶囊涂层因微胶囊聚集形成微凸体,增加了表面摩擦力,同时过高质量分数的微胶囊也降低了涂层与基材的附着力,导致表面脱落和较大凹坑的出现。结果表明,15%质量分数微胶囊涂层的耐磨性最佳。
|
图 5 不同质量分数微胶囊涂层的摩擦磨损表面SEM图 Fig. 5 SEM images of friction and wear surfaces of the microcapsule coatings with different mass fraction |
图6显示了不同质量分数微胶囊涂层在模拟体液中浸泡1、5、10、20 d后的Bode图。由图6可知:浸泡1 d后,0%质量分数微胶囊涂层的低频阻抗为7.8×105 Ω·cm2,随着微胶囊质量分数增加到15%时,其低频阻抗为4.3×106 Ω·cm2,微胶囊的添加能有效抑制不锈钢钢的腐蚀;浸泡20 d后,0%、5%、15%、25%质量分数微胶囊涂层的低频阻抗依次为3.0×105、2.6×105、7.0×105、4.8×105 Ω·cm2,表明15%质量分数微胶囊涂层的耐腐蚀性能优于其他涂层的。
|
图 6 不同质量分数微胶囊涂层的Bode图 Fig. 6 Bode diagrams of the microcapsule coatings with different mass fraction |
使用SEM进一步检查了划伤区域的形貌,如图7所示。由图7可知:0%质量分数微胶囊涂层划伤区域为一道深沟槽,内部无任何填充;添加15%质量分数微胶囊涂层划伤区域在桐油固化后明显形成了一层桐油膜,且膜层结构致密,没有任何孔隙结构,在划伤位置形成了一个能够阻碍腐蚀介质扩散的完整屏障,能提高涂层的耐腐蚀性能,由此证实涂层具有自修复能力。
|
图 7 微胶囊涂层划伤区域SEM图 Fig. 7 SEM images of scratched areas on the microcapsule coatings |
本研究采用原位乳液聚合法成功制备了核壳结构的微胶囊,微胶囊直径约为450 nm,壁厚约为90 nm,微胶囊稳定性良好,其中桐油质量分数约为81.6%。将微胶囊添加到硅凝胶基质中,制备了具有良好自润滑和自修复的多功能涂层。摩擦磨损测试表明,15%质量分数微胶囊涂层磨损深度最小,耐磨性最好。电化学测试结果表明,15%质量分数微胶囊涂层在模拟体液中短期(1 d)浸泡时,涂层的低频阻抗为4.3×106 Ω·cm2,长期(20 d)浸泡后微胶囊涂层的低频阻抗仍保持7.0×105 Ω·cm2。
| [1] |
ALI S, ABDUL RANI A M, BAIG Z, et al. Biocompatibility and corrosion resistance of metallic biomaterials[J]. Corrosion Reviews, 2020, 38(5): 381-402. DOI:10.1515/corrrev-2020-0001 |
| [2] |
KANG C W, FANG F Z. State of the art of bioimplants manufacturing: part II[J]. Advances in Manufacturing, 2018, 6(2): 137-154. DOI:10.1007/s40436-018-0218-9 |
| [3] |
ALI S, IRFAN M, NIAZI U M, et al. Microstructure and mechanical properties of modified 316L stainless steel alloy for biomedical applications using powder metallurgy[J]. Materials, 2022, 15(8): 2822. DOI:10.3390/ma15082822 |
| [4] |
PLACKO H E, BROWN S A, PAYER J H. Effects of microstructure on the corrosion behavior of CoCr porous coatings on orthopedic implants[J]. Journal of Biomedical Materials Research, 1998, 39(2): 292-299. DOI:10.1002/(SICI)1097-4636(199802)39:2<292::AID-JBM17>3.0.CO;2-F |
| [5] |
ALI S, ABDUL RANI A M, MUFTI R A, et al. The influence of nitrogen absorption on microstructure, properties and cytotoxicity assessment of 316L stainless steel alloy reinforced with boron and niobium[J]. Processes, 2019, 7(8): 506. DOI:10.3390/pr7080506 |
| [6] |
FELLAH M, LABAÏZ M, ASSALA O, et al. Tribological behaviour of AISI 316L stainless steel for biomedical applications[J]. Tribology-Materials, Surfaces & Interfaces, 2013, 7(3): 135–149.
|
| [7] |
LEI M K, ZHU X M. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels[J]. Biomaterials, 2001, 22(7): 641-647. DOI:10.1016/S0142-9612(00)00226-X |
| [8] |
Thomann U I, Uggowitzer P J. Wear-corrosion behavior of biocompatible austenitic stainless steels[J]. Wear, 2000, 239(1): 48-58. DOI:10.1016/S0043-1648(99)00372-5 |
| [9] |
GHOSH S K. Functional coatings and microencapsulation: a general perspective[M]//GHOSH S K. Functional Coatings: by Polymer Microencapsulation. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006: 1–28.
|
| [10] |
SUN J Y, WANG Y M, LI N, et al. Tribological and anticorrosion behavior of self-healing coating containing nanocapsules[J]. Tribology International, 2019, 136: 332-341. DOI:10.1016/j.triboint.2019.03.062 |
| [11] |
SHARMA P, SHUKLA S, LOCHAB B, et al. Microencapsulated cardanol derived benzoxazines for self-healing applications[J]. Materials Letters, 2014, 133: 266-268. DOI:10.1016/j.matlet.2014.07.048 |
| [12] |
WU D Y, MEURE S, SOLOMON D. Self-healing polymeric materials: a review of recent developments[J]. Progress in Polymer Science, 2008, 33(5): 479-522. DOI:10.1016/j.progpolymsci.2008.02.001 |
| [13] |
LI H Y, CUI Y X, WANG H Y, et al. Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 181-187. |
| [14] |
LI W X, GUO Z H, YANG J, et al. Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion[J]. Electrochemical Energy Reviews, 2022, 5(3): 9. DOI:10.1007/s41918-022-00169-z |
| [15] |
LI J C, XU Y, LIANG L P, et al. Metal-organic frameworks-derived nitrogen-doped carbon with anchored dual-phased phosphides as efficient electrocatalyst for overall water splitting[J]. Sustainable Materials and Technologies, 2022, 32: e00421. DOI:10.1016/j.susmat.2022.e00421 |
| [16] |
LI H Y, CUI Y X, LI Z K, et al. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings[J]. Progress in Organic Coatings, 2018, 115: 164-171. DOI:10.1016/j.porgcoat.2017.11.019 |
| [17] |
ÇÖMLEKÇI G K, ULUTAN S. Acquired self-healing ability of an epoxy coating through microcapsules having linseed oil and its alkyd[J]. Progress in Organic Coatings, 2019, 129: 292-299. DOI:10.1016/j.porgcoat.2019.01.022 |
| [18] |
LI H Y, WANG Q, LI M L, et al. Preparation of high thermal stability polysulfone microcapsules containing lubricant oil and its tribological properties of epoxy composites[J]. Journal of Microencapsulation, 2016, 33(3): 286-291. DOI:10.3109/02652048.2016.1171917 |
| [19] |
GUO Q B, LAU K T, ZHENG B F, et al. Imparting ultra-low friction and wear rate to epoxy by the incorporation of microencapsulated lubricant?[J]. Macromolecular Materials and Engineering, 2009, 294(1): 20-24. DOI:10.1002/mame.200800257 |
| [20] |
SARMENTO B, MARTINS S, RIBEIRO A, et al. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers[J]. International Journal of Peptide Research and Therapeutics, 2006, 12(2): 131-138. DOI:10.1007/s10989-005-9010-3 |
| [21] |
HAGEN A, SKJÂK-BRAEK G, DORNISH M. Pharmacokinetics of sodium alginate in mice[J]. European Journal of Pharmaceutical Sciences, 1996, 4(S1): S100. |
| [22] |
GOMBOTZ W R, WEE S F. Protein release from alginate matrices[J]. Advanced Drug Delivery Reviews, 2012, 64(S1): 194-205. |
| [23] |
CUI G, BI Z X, WANG S H, et al. A comprehensive review on smart anti-corrosive coatings[J]. Progress in Organic Coatings, 2020, 148: 105821. DOI:10.1016/j.porgcoat.2020.105821 |
| [24] |
ZHUANG Y W, REN Z Y, JIANG L, et al. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 199: 146-152. DOI:10.1016/j.saa.2018.03.020 |
| [25] |
STOJANOVIC R, BELSCAK-CVITANOVIC A, MANOJLOVIC V, et al. Encapsulation of thyme (Thymus serpyllum L. ) aqueous extract in calcium alginate beads[J]. Journal of the Science of Food and Agriculture, 2012, 92(3): 685-696. DOI:10.1002/jsfa.4632 |
| [26] |
YANG K, SHI X L, ZHENG D, et al. Tribological behavior of a TiAl matrix composite containing 10 wt% Ag investigated at four wear stages[J]. RSC Advances, 2015, 5(95): 77885-77896. DOI:10.1039/C5RA13066B |
| [27] |
SCHMID J, SIEBER V, REHM B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies[J]. Frontiers in Microbiology, 2015, 6: 496. |
2025, Vol. 46


