[1] |
SINGH P, SUDHAIK A, RAIZADA P, et al. Photocatalytic performance and quick recovery of BiOI/Fe 3O 4@graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light[J]. Materials Today Chemistry, 2019, 12: 85-95. DOI:10.1016/j.mtchem.2018.12.006 |
[2] |
WANG H L, ZHANG L S, CHEN Z G, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244. DOI:10.1039/C4CS00126E |
[3] |
沈淑玲, 熊舸. 可见光驱动的Ti基半导体光催化剂的研究进展[J]. 有色金属材料与工程, 2022, 43(5): 1-12. |
[4] |
QU X F, LIU M H, YANG J Y, et al. A novel ternary TiO 2/CQDs/BiO X ( X = Cl, Br, I) heterostructure as photocatalyst for water purification under solar irradiation[J]. Journal of Solid State Chemistry, 2018, 264: 77-85. DOI:10.1016/j.jssc.2018.05.002 |
[5] |
辛艳梅, 么聪菲, 缪煜清. 铋的特殊性质及其在高新技术领域的应用前景[J]. 有色金属材料与工程, 2020, 41(5): 38-45. |
[6] |
CASTILLO-CABRERA G X, ESPINOZA-MONTERO P J, ALULEMA-PULLUPAXI P, et al. Bismuth oxyhalide-based materials (BiOX: X = Cl, Br, I) and their application in photoelectrocatalytic degradation of organic pollutants in water: a review[J]. Frontiers in Chemistry, 2022, 10: 900622. DOI:10.3389/fchem.2022.900622 |
[7] |
SINGH S, SHARMA R, KHANUJA M. A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X=Cl, Br, I, F) nanostructures[J]. Korean Journal of Chemical Engineering, 2018, 35(10): 1955-1968. DOI:10.1007/s11814-018-0112-y |
[8] |
刘家琴, 吴玉程. 基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展[J]. 无机材料学报, 2015, 30(10): 1009-1017. |
[9] |
GNAYEM H, SASSON Y. Hierarchical Nanostructured 3D flowerlike BiOCl xBr 1-x semiconductors with exceptional visible light photocatalytic activity[J]. ACS Catalysis, 2013, 3(2): 186-191. DOI:10.1021/cs3005133 |
[10] |
SHANG M, WANG W Z, REN J, et al. A novel BiVO 4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis[J]. CrystEngComm, 2010, 12(6): 1754-1758. DOI:10.1039/b923115c |
[11] |
LOU X, SHANG J, WANG L, et al. Enhanced photocatalytic activity of Bi24O31Br10: constructing heterojunction with BiOI[J]. Journal of Materials Science & Technology, 2017, 33(3): 281-284. |
[12] |
SUN X M, WU J, LI Q F, et al. Fabrication of BiOIO 3 with induced oxygen vacancies for efficient separation of the electron-hole pairs[J]. Applied Catalysis B:Environmental, 2017, 218: 80-90. DOI:10.1016/j.apcatb.2017.06.041 |
[13] |
姚海伟, 王荟琪, 蒲卓林, 等. 二维材料 / 二氧化钛复合材料的光催化研究进展[J]. 材料热处理学报, 2023, 44( 2): 13-29.
|
[14] |
王进, 沈淑玲, 杨俊和. 碳基材料在电催化还原CO2中的应用[J]. 有色金属材料与工程, 2020, 41(4): 48-60. |
[15] |
ZHAO Y Y, GUO H X, LIU J, et al. Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: mechanism and toxicity assessment[J]. Journal of Colloid and Interface Science, 2022, 627: 180-193. DOI:10.1016/j.jcis.2022.07.046 |
[16] |
DI J, XIA J X, JI M X, et al. Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process[J]. Journal of Materials Chemistry A, 2016, 4(14): 5051-5061. DOI:10.1039/C6TA00284F |
[17] |
XU Y Q, HU X L, ZHU H K, et al. Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities[J]. Journal of Materials Science, 2016, 51(9): 4342-4348. DOI:10.1007/s10853-016-9745-6 |
[18] |
WANG Y, SHI Z Q, FAN C M, et al. Synthesis, characterization, and photocatalytic properties of BiOBr catalyst[J]. Journal of Solid State Chemistry, 2013, 199: 224-229. DOI:10.1016/j.jssc.2012.12.031 |
[19] |
LI H Q, JIA Q F, CUI Y M, et al. Photocatalytic properties of BiOI synthesized by a simple hydrothermal process[J]. Materials Letters, 2013, 107: 262-264. DOI:10.1016/j.matlet.2013.06.019 |
[20] |
SHARMA K, DUTTA V, SHARMA S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 1-20. DOI:10.1016/j.jiec.2019.06.022 |
[21] |
LI Y, JIANG H Y, WANG X, et al. Recent advances in bismuth oxyhalide photocatalysts for degradation of organic pollutants in wastewater[J]. RSC Advances, 2021, 11(43): 26855-26875. DOI:10.1039/D1RA05796K |
[22] |
WANG F J, GU Y Y, YANG Z Y, et al. The effect of halogen on BiOX (X = Cl, Br, I)/Bi 2WO 6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation[J]. Applied Catalysis A:General, 2018, 567: 65-72. DOI:10.1016/j.apcata.2018.09.010 |
[23] |
KOMARNENI S, NOH Y D, KIM J Y, et al. Solvothermal/hydrothermal synthesis of metal oxides and metal powders with and without microwaves[J]. Zeitschrift für Naturforschung B, 2010, 65(8): 1033-1037. |
[24] |
XU Z K. Synthesis of BiOCl nanosheets with exposed (010) facets via a facile two-phase reaction and photocatalytic activity[J]. Ferroelectrics, 2018, 527(1): 37-43. DOI:10.1080/00150193.2018.1450046 |
[25] |
HU J Y, JING X P, ZHAI L, et al. BiOCl facilitated photocatalytic degradation of atenolol from water: Reaction kinetics, pathways and products[J]. Chemosphere, 2019, 220: 77-85. DOI:10.1016/j.chemosphere.2018.12.085 |
[26] |
NING S B, DING L Y, LIN Z G, et al. One-pot fabrication of Bi 3O 4Cl/BiOCl plate-on-plate heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016, 185: 203-212. DOI:10.1016/j.apcatb.2015.12.021 |
[27] |
SINHA A, DHANJAI, JAIN R, et al. Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review[J]. Microchimica Acta, 2018, 185(2): 89. DOI:10.1007/s00604-017-2626-0 |
[28] | |
[29] |
DO MINH T, SONG J Z, DEB A, et al. Biochar based catalysts for the abatement of emerging pollutants: a review[J]. Chemical Engineering Journal, 2020, 394: 124856. DOI:10.1016/j.cej.2020.124856 |
[30] |
WANG Q, ZHOU M, ZHANG Y, et al. Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(5): 4294-4300. DOI:10.1007/s10854-017-8376-2 |
[31] |
WANG L B, HU X L. Recent advances in porous carbon materials for electrochemical energy storage[J]. Chemistry-An Asian Journal, 2018, 13(12): 1518-1529. DOI:10.1002/asia.201800553 |
[32] |
RAJAKUMAR G, ZHANG X H, GOMATHI T, et al. Current use of carbon-based materials for biomedical applications-a prospective and review[J]. Processes, 2020, 8(3): 355. DOI:10.3390/pr8030355 |
[33] |
SHEN F, XIONG X N, FU J Y, et al. Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109944. DOI:10.1016/j.rser.2020.109944 |
[34] |
XIA J X, DI J, LI H T, et al. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis[J]. Applied Catalysis B:Environmental, 2016, 181: 260-269. DOI:10.1016/j.apcatb.2015.07.035 |
[35] |
DUO F, WANG Y W, FAN C M, et al. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs[J]. Journal of Alloys and Compounds, 2016, 685: 34-41. DOI:10.1016/j.jallcom.2016.05.259 |
[36] |
GUO W X, ZHANG F, LIN C J, et al. Direct growth of TiO 2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange[J]. Advanced Materials, 2012, 24(35): 4761-4764. DOI:10.1002/adma.201201075 |
[37] |
WENG B C, XU F H, XU J G. Hierarchical structures constructed by BiOX ( X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange[J]. Journal of Nanoparticle Research, 2014, 16(12): 2766. DOI:10.1007/s11051-014-2766-7 |
[38] |
SHARMA N, VERES B, DHIMAN P, et al. Mechanistic insight of structural and optical properties of BiOCl in the presence of CNTs and investigating photodegradation of phenol by BiOCl/CNT composites[J]. RSC Advances, 2021, 11(59): 37426-37435. DOI:10.1039/D1RA07003G |
[39] |
MA D M, ZHONG J B, LI J Z, et al. Preparation and photocatalytic performance of MWCNTs/BiOCl: evidence for the superoxide radical participation in the degradation mechanism of phenol[J]. Applied Surface Science, 2019, 480: 395-403. DOI:10.1016/j.apsusc.2019.02.195 |
[40] |
HOU J H, ZHANG T T, JIANG T, et al. Fast preparation of oxygen vacancy-rich 2D/2D bismuth oxyhalides-reduced graphene oxide composite with improved visible-light photocatalytic properties by solvent-free grinding[J]. Journal of Cleaner Production, 2021, 328: 129651. DOI:10.1016/j.jclepro.2021.129651 |
[41] |
CAI J, XIE Y B, MA C, et al. rGO-modified BiOX (X = Cl, I, Br) for enhanced photocatalytic eradication of gaseous mercury[J]. Applied Surface Science, 2022, 594: 153502. DOI:10.1016/j.apsusc.2022.153502 |
[42] |
GONÇALVES M G, DA SILVA VEIGA P A, FORNARI M R, et al. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange[J]. Science of the Total Environment, 2020, 748: 141381. DOI:10.1016/j.scitotenv.2020.141381 |
[43] |
KASAP H, ACHILLEOS D S, HUANG A L, et al. Photoreforming of lignocellulose into H 2 using nanoengineered carbon nitride under benign conditions[J]. Journal of the American Chemical Society, 2018, 140(37): 11604-11607. DOI:10.1021/jacs.8b07853 |
[44] |
YE S J, YAN M, TAN X F, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light[J]. Applied Catalysis B:Environmental, 2019, 250: 78-88. DOI:10.1016/j.apcatb.2019.03.004 |
[45] |
YAN Y, TANG X, MA C C, et al. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity[J]. New Journal of Chemistry, 2020, 44(1): 79-86. DOI:10.1039/C9NJ05219D |
[46] |
NIU L S, HU Y L, HU H P, et al. Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants[J]. Environmental Research, 2022, 214: 114068. DOI:10.1016/j.envres.2022.114068 |
[47] |
ZHANG Y, SUN B H, JIANG L, et al. Growth of flower-like BiOCl on 3D honeycomb-like N-doped graphitic carbon for greatly enhanced NO x gas sensing performance at room temperature[J]. Microporous and Mesoporous Materials, 2022, 338: 111964. DOI:10.1016/j.micromeso.2022.111964 |