有色金属材料与工程  2024, Vol. 45 Issue (2): 1-8    DOI: 10.13258/j.cnki.nmme.20230315001   PDF    
碳材料改性的BiOX光催化材料的研究进展
顾颖颖, 龙安椿, 于永昌, 葛宪龙, 宋炎锴, 蒙敏凤, 胡少华    
上海理工大学, 材料与化学学院 上海 200093
摘要:环境与能源问题严峻,人们迫切需要开发一些高效、环保、稳定的光催化剂。卤氧化铋(BiOXX为Cl、Br、I)因其独特的层状结构、优异的光学、电学性能而受到光催化领域的广泛关注。但BiOX存在光吸收不足、电子−空穴(electron-hole,e−h+)快速复合、载流子浓度有限等问题而限制了它的应用。利用碳材料修饰BiOX可以极大地提升BiO X的光催化性能。简要介绍了BiOX的结构、性质、改性方案,碳材料基本类型和性质,主要综述了近几年零维,一维,二维,三维碳材料改性的BiOX光催化剂的研究进展,并分析了碳材料对BiOX光催化剂的提升机制,最后展望了碳材料改性的BiOX所面临的机遇和挑战。
关键词卤氧化铋    碳材料    改性    光催化性能    
Research progress of BiOX photocatalytic materials modified by carbon materials
GU Yingying, LONG Anchun, YU Yongchang, GE Xianlong, SONG Yankai, MENG Minfeng, HU Shaohua    
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: Due to the severe environmental and energy problems, there is an urgent need to develop some efficient, environmentally friendly and stable photocatalysts. Bismuth oxyhalide (BiOX, X=Cl, Br, I) has attracted extensive attention in the field of photocatalysis because of its unique layered structure, excellent optical and electrical properties. However, due to the insufficient visible light absorption, rapid electron-hole (e-h+) recombination and limited carrier concentration, the application of BiOX is limited. Carbon material modification can greatly improve the photocatalytic performance of BiOX. This paper briefly introduces the structure, properties, modification scheme of BiOX and the basic types and properties of carbon materials. The research progress of zero-dimensional, one-dimensional, two-dimensional and three-dimensional carbon materials modified BiOX photocatalyst in recent years has been mainly reviewed, and the improvement mechanism of carbon materials on BiOX photocatalyst is analyzed. Finally, the opportunities and challenges faced by carbon materials modified BiOX are prospected.
Key words: bismuth oxyhalide    carbon materials    modification    photocatalytic performance    

世界经济不断发展和人口快速增长,不但使能源和环境问题严峻,而且使我们的生态系统遭受了很大程度的破坏。开发环境友好型的化石燃料替代品至关重要[1]。半导体光催化技术能利用太阳能降解有机污染物,分解H2O制氢,固定N2和还原CO2[2-3]。因此,半导体光催化引起了研究者广泛的研究兴趣[3-4]

BiOXX = Cl、Br、I)是一种优良的半导体光催化材料,具有催化活性高、稳定性好、制备工艺简单、对环境毒性低等诸多优点[5]。BiOX具备优异性能主要是源于[Bi2O2]片与双卤原子片交织而成的独特层状结构[6],它们之间形成的特殊内电场可以有效地分离电子和空穴[7]。然而,需要进一步提高BiOX的光生电子和空穴的分离效率以满足实际需要。此前,有综述重点总结了BiOX的合成、性质和应用[8]。还有些总结了BiOX光催化剂性能改性策略,其中包括[9-12]:纳米结构控制、异质结结构、非本征元素掺杂、缺陷工程和晶面工程等。即便已有很多改性手段,人们还是寻找更加简单、成本更加低廉的方法。碳材料结构丰富(包括:0D、1D、2D、3D)、比表面积大、导电性高、导热性好、光学性能独特和力学性能优异,被广泛应用于光催化领域[13-14]。近年来,很多工作证明了利用碳材料修饰BiOX光催化剂能极大地提高其光催化活性。例如,Zhao等[15]制备了碳量子点(carbon quantum dots,CQDs)修饰的三维花状CQDs/BiOX复合材料光催化剂,并对罗丹明B(rhodamine B,RhB)和左氧氟沙星(levofloxacin,LEV)有出色的光催化降解性能。光催化性能提升的原因是:在光诱导下金属Bi的形成以及CQDs和纯BiOX之间的协同效应,使CQDs/BiOX具有优异的光吸收和电子转移能力。Di等[16]制备了氮掺杂碳量子点(nitrogen doped carbon dots,N-CQDs)修饰的原子级可控的BiOI薄纳米片。在可见光和紫外光照射下其光催化活性提高。这归因于表面构造的N-CQDs极大地促进表面电荷载流子分离,并进一步增加活性物种的浓度。

虽然,部分工作报道了碳材料改性的BiOX。但是,迄今为止,仍然没有文章从各类碳材料的角度系统地分析其对BiOX的改性作用。在现有文献基础上,本文补充说明了各类碳材料改性的BiOX催化剂最新研究进展,并洞悉了碳材料在其中的作用。最后进行总结并对碳材料改性的光催化剂的应用前景进行展望。

1 BiOX性质、制备和改性方法

BiOXX=Cl、Br、I)的结构如图1所示,性质见表1,制备方法和工艺特点见表2

图 1 BiOX 的结构[17] Fig. 1 Structures of BiOX [17]

表 1 BiOX的性质对比 Tab. 1 Comparison of BiOX properties

表 2 BiOX的合成方法及特点 Tab. 2 Synthesis method and characteristics of BiOX

可见,BiOX的合成方法很多且有各自的特点。总体来说,沉淀法和水热法合成条件温和,是常用的两种方法。通过这些方法合成的部分BiOX在可见光下表现出很强的光吸收能力,但它们的光生电荷载流子复合速度快,所以总体来说光催化效率仍然很低,与实际应用还存在一定差距。人们采用碳材料作修饰剂或助催化剂对BiOX进行修饰,其光催化性能得到很大改善[26]

2 碳材料基本性质及应用

碳基材料(carbon-based materials,CBMs)包含广泛,在材料科学发展中有着非常重要的作用。如表3所列,它们分别为[27-28]:CQDs、富勒烯(C60)、石墨烯(graphene,GR)、氧化石墨烯(graphene oxide,GO)、碳纳米角(carbon nanohorns,CNHs)、碳纳米洋葱(carbon nano-onions,CNOs)、金刚石纳米颗粒(diamond nanoparticles,DNPs)、碳纳米纤维(carbon nanofibers,CNFs)、碳纳米管(carbon nanotubes,CNTs)以及生物质衍生碳材料(biomass derived carbon material,BCM)等。碳材料的核心潜在特征很多,例如:显著的导电性[29]、超高的光学性能[30]、热和力学性能[31]、化学稳定性[32]、高表面积、低成本以及高度发达且可调的孔隙率[33]。这些特性使它们被应用于各领域,如水净化、催化、氧还原反应、清洁能源转换和储存等。

表 3 不同的碳纳米材料形态及其特性[34] Tab. 3 Different forms of carbon nano materials and their characteristics[34]

因此,如何利用碳材料改性BiOX光催化性能的研究已经成为BiOX光催化材料研究中的又一关键问题。

3 碳材料修饰的BiOX催化剂及应用 3.1 0D碳改性的BiOX

0D CQDs有较好的稳定性、高的比表面积和好的电荷分离作用,在光催化应用领域已经赢得了广泛的关注。与其他半导体相比,CQDs使电子注入的可能性更大。另外,它的尺寸决定着它的光学性质和催化剂的光子通量。Xia等[34]通过改变CQDs负载浓度制备了CQDs/BiOX复合光催化剂。在可见光照射下,使用RhB、环丙沙星(ciprofloxacin,CIP)和双酚A(bisphenol-A,BPA)3种不同的污染物来测定所制备的光催化剂活性。结果证明,质量分数为3%的CQDs/BiOBr样品与其他光催化剂相比显示出最高的光催化活性。其光催化活性增强是因为CQDs加入之后,光催化剂的光吸收增强,光生e−h+有更高的分离效率和更快的转移速率。

CQDs除了能改善催化剂的导电性外,也有很多工作利用其上转换发光效应提升BiOX光催化剂性能。Duo等[35]在室温下通过简单的水解方法合成了含氧空位的CQDs/BiOBr复合材料。所得催化剂在可见光下表现出比纯BiOBr高得多的光催化活性和稳定性。通过光致发光(photoluminescence,PL)光谱、瞬态光电流(photocurrent,PC)谱图、电子自旋共振(electron spin resonance,ESR)、淬灭实验以及RhB和BPA的降解实验进一步研究了CQDs的作用。结果表明,CQDs具有良好的长波长可见光和近红外光吸收特性,CQDs的上转换效应通过氧空位中更多的电子转移来促进BiOBr光催化过程中超氧自由基(•O2−)的形成。此外,量子点的上转换效应可以刷新BiOBr上的氧空位,从而保持BiOBr的光催化稳定性。

3.2 1D碳改性的BiOX

CNTs是具有sp2有序结构的1D碳质材料,可以通过在光催化剂和CNTs之间产生肖特基结来确保高导电性。除此之外,其高的电子吸收能力可以显著降低e−h+复合率,其良好的吸附性能可以快速吸附反应物分子加快反应进程,这使得它们成为光催化过程的理想材料。此外,CNTs具有大的长径比、高的电子迁移率和显著的柔韧性,是提高光催化活性的良好载体材料。当光照射BiOX光催化剂时,其较低的费米能级,受激电子可以转移到CNTs,并使光生电荷载流子的高度分离,以加速光催化活性。

有研究显示,半导体和碳的协同效应也可以大大延缓光生e和h+的复合,从而显著提高光催化性能[36]。例如,Weng等[37]合成了由CNTs、碳纤维(carbon fibres,CFs)、BiOCl和BiOI纳米片(nanosheets,NSs)复合的分级结构(CNTs/CFs-NSs)催化剂。与纯BiOCl-NSs和BiOI-NSs相比,CNTs/CFs-NSs修饰的的BiOX对甲基橙的光催化降解效率分别提高3倍和2倍。其原因是CNTs沿CFs轴向排列,并形成π-π堆积作用,增强了CNTs的导电性,这有利于电子的收集和传输。Nikita等[38]通过水热法合成了BiOCl与CNTs的复合材料。如表4结果所示,CNTs主要通过影响BiOCl的微晶尺寸,从而影响BiOCl光催化剂的性能。使用适量的CNTs可以补偿BiOCl材料表面性质的损失,并改善其性能。这就决定了BiOCl/CNTs复合材料具有优异光催化性能。Ma等[39]水热法成功地原位制备了多壁碳纳米管(multi-walled carbon nanotubes,MWCNTs)修饰的BiOCl复合材料,并对其进行了一系列的研究。以苯酚为模型分子,在紫外光照射下测试了MWCNTs修饰的MWCNTs/BiOCl材料的光催化活性。图2所示的机制分析表明,添加相对少量的MWCNTs可以改善BiOCl的光催化活性。其中,MWCNTs 的质量分数为3%的样品对苯酚的降解活性最好。该策略使催化剂性能提升的原因可以解释为MWCNTs促进•O2−自由基的有效形成,导致苯酚在MWCNTs/BiOCl材料上的快速衰减。

表 4 水热4.5 h和6.5 h的BiOCl微晶尺寸随CNTs的质量分数变化[38] Tab. 4 Size of BiOCl microcrystals as a function of the mass fraction of CNTs after hydrothermal time of 4.5 h and 6.5 h [38]

图 2 MWCNTs/BiOCl光催化机制示意图[39] Fig. 2 Schematic illustration of photocatalytic mechanism of MWCNTs/BiOCl[39]
3.3 2D碳改性的BiOX

在碳的2D材料中,GR是被广泛使用且最具代表的材料之一。它是一种零带隙2D半导体材料,具有优异的光学性能,且具有较大的比表面积,可以为反应体系提供更多的活性位点。在所有碳材料与催化剂的相互作用中,GR与BiOX之间杂化可以极大地提高催化剂的光催化性能。

Hou等[40]制备了含有大量氧空位的BiOX/rGO异质结,具有2D/2D异质结结构的BiOX/rGO提供了更高的比表面积和更大的异质界面,并且有规律地转移光生电子。上述特征的双重协同效应,使BiOX/rGO可以为有机污染物的光降解提供更多的活性物质(h+、•OH和•O2−)。降解测试表明,在可见光照射下BiOCl/rGO、BiOBr/rGO和BiOI/rGO对RhB的降解率分别是纯BiOCl、BiOBr和BiOI的6、3和2倍。

Cai等[41]通过一种新颖的两步溶剂热法合成rGO修饰的BiOX纳米片。rGO的改性导致BiOX纳米片的比表面积显著增加,并且rGO-BiOX的带隙减小,光吸收范围和强度提高,光生载流子分离速率加快,光生e−h+复合减少。rGO-BiOX光催化性能不但有明显的改善。此外,rGO改性的样品还表现出优异的稳定性,即在几次循环后仍保持很高的汞去除效率。

3.4 3D碳改性的BiOX

从结构上看,大多数生物炭(biochar,BC)的结构为3D结构。BC具有良好的官能团、优异的导电性和独特的光电性质[42]。因此,它被用做催化剂或电极的合成[43]。自然界中有许多种类的生物质被认为是BC的前体,比如:甘蔗渣、稻草、竹叶等[44-45]。一直以来,人们都在探寻环境友好的前驱体和探索BC促进光催化的机制。Niu等[46]对餐厨垃圾衍生生物炭(kitchen waste derived biochar,KBC)通过400 ℃热处理后,再通过超声处理和溶剂热反应合成了一系列KBC/BiOXX=Br,Cl)光催化剂。最佳光催化剂0.15 KBC/BiOBr和0.15 KBC/BiOCl分别在20 min和35 min内实现了甲基橙(methyl orange,MO)的完全光降解。降解机制如图3所示,0.15 KBC/BiOBr(2.40 eV)和0.15 KBC/BiOCl(3.00 eV)的估算带隙能显著低于BiOBr(2.73 eV)和BiOCl(3.30 eV)的,一方面是电子在界面上传输时可能会产生离域。另外一个原因是,KBC的3D结构促进了光催化剂的可见光捕获。

图 3 可见光照射下0.15 KBC/BiOX复合材料对有机污染物的光催化降解机制[46] Fig. 3 Photocatalytic degradation mechanism of organic pollutants by 0.15 KBC/BiOX composite materials under visible light irradiation[46]

Zhang等[47]采用一种简单的聚合物热处理和回流方法,在氮掺杂的三维蜂窝状石墨碳(nitrogen-doped three-dimensional honeycomb graphite carbon,N-GC)上生长了花状的BiOCl,从而合成BiOCl/N-GC复合材料。N-GC分级结构有效地提高了花状BiOCl的分散性,这增加了催化剂与NOx气体分子的接触面积。最终,N-GC的大比表面积,中孔的协同效应和多级结构使BiOCl的(102)面具有合适的NOx吸附能,进而其光催化活性被提升。

4 结论及展望

目前国内外对改性的BiOX光催化剂的制备与性能提升方面做了大量研究工作,并且积累了丰富的技术与经验。在众多提升BiOX光催化性能的改性方案中,主要是通过提升光生载流子的分离效率,提高光催化剂的可见或紫外光吸收强度,增加光催化剂活性位点的暴露等方式来实现。在前者工作基础上,本文对0D~3D碳材料BiOX改性后的光催化剂性能提升机制及应用领域进行了总结。然而,目前绝大多数对碳改性的BiOX研究成果与应用仅集中在实验室层面,并且理论研究较为欠缺。在今后的发展中应深入探索BiOX光催化剂与改性材料相互作用的机制。在进一步提升其光催化性能的同时,也要确保碳材料与BiOX类光催化剂的稳定性,并逐渐将此类光催化剂推向工程化实际应用。

参考文献
[1]
SINGH P, SUDHAIK A, RAIZADA P, et al. Photocatalytic performance and quick recovery of BiOI/Fe3O4@graphene oxide ternary photocatalyst for photodegradation of 2, 4-dintirophenol under visible light[J]. Materials Today Chemistry, 2019, 12: 85-95. DOI:10.1016/j.mtchem.2018.12.006
[2]
WANG H L, ZHANG L S, CHEN Z G, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244. DOI:10.1039/C4CS00126E
[3]
沈淑玲, 熊舸. 可见光驱动的Ti基半导体光催化剂的研究进展[J]. 有色金属材料与工程, 2022, 43(5): 1-12.
[4]
QU X F, LIU M H, YANG J Y, et al. A novel ternary TiO2/CQDs/BiOX (X = Cl, Br, I) heterostructure as photocatalyst for water purification under solar irradiation[J]. Journal of Solid State Chemistry, 2018, 264: 77-85. DOI:10.1016/j.jssc.2018.05.002
[5]
辛艳梅, 么聪菲, 缪煜清. 铋的特殊性质及其在高新技术领域的应用前景[J]. 有色金属材料与工程, 2020, 41(5): 38-45.
[6]
CASTILLO-CABRERA G X, ESPINOZA-MONTERO P J, ALULEMA-PULLUPAXI P, et al. Bismuth oxyhalide-based materials (BiOX: X = Cl, Br, I) and their application in photoelectrocatalytic degradation of organic pollutants in water: a review[J]. Frontiers in Chemistry, 2022, 10: 900622. DOI:10.3389/fchem.2022.900622
[7]
SINGH S, SHARMA R, KHANUJA M. A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX (X=Cl, Br, I, F) nanostructures[J]. Korean Journal of Chemical Engineering, 2018, 35(10): 1955-1968. DOI:10.1007/s11814-018-0112-y
[8]
刘家琴, 吴玉程. 基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究进展[J]. 无机材料学报, 2015, 30(10): 1009-1017.
[9]
GNAYEM H, SASSON Y. Hierarchical Nanostructured 3D flowerlike BiOClxBr1-x semiconductors with exceptional visible light photocatalytic activity[J]. ACS Catalysis, 2013, 3(2): 186-191. DOI:10.1021/cs3005133
[10]
SHANG M, WANG W Z, REN J, et al. A novel BiVO4 hierarchical nanostructure: controllable synthesis, growth mechanism, and application in photocatalysis[J]. CrystEngComm, 2010, 12(6): 1754-1758. DOI:10.1039/b923115c
[11]
LOU X, SHANG J, WANG L, et al. Enhanced photocatalytic activity of Bi24O31Br10: constructing heterojunction with BiOI[J]. Journal of Materials Science & Technology, 2017, 33(3): 281-284.
[12]
SUN X M, WU J, LI Q F, et al. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs[J]. Applied Catalysis B:Environmental, 2017, 218: 80-90. DOI:10.1016/j.apcatb.2017.06.041
[13]
姚海伟, 王荟琪, 蒲卓林, 等. 二维材料 / 二氧化钛复合材料的光催化研究进展[J]. 材料热处理学报, 2023, 44( 2): 13-29.
[14]
王进, 沈淑玲, 杨俊和. 碳基材料在电催化还原CO2中的应用[J]. 有色金属材料与工程, 2020, 41(4): 48-60.
[15]
ZHAO Y Y, GUO H X, LIU J, et al. Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: mechanism and toxicity assessment[J]. Journal of Colloid and Interface Science, 2022, 627: 180-193. DOI:10.1016/j.jcis.2022.07.046
[16]
DI J, XIA J X, JI M X, et al. Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process[J]. Journal of Materials Chemistry A, 2016, 4(14): 5051-5061. DOI:10.1039/C6TA00284F
[17]
XU Y Q, HU X L, ZHU H K, et al. Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities[J]. Journal of Materials Science, 2016, 51(9): 4342-4348. DOI:10.1007/s10853-016-9745-6
[18]
WANG Y, SHI Z Q, FAN C M, et al. Synthesis, characterization, and photocatalytic properties of BiOBr catalyst[J]. Journal of Solid State Chemistry, 2013, 199: 224-229. DOI:10.1016/j.jssc.2012.12.031
[19]
LI H Q, JIA Q F, CUI Y M, et al. Photocatalytic properties of BiOI synthesized by a simple hydrothermal process[J]. Materials Letters, 2013, 107: 262-264. DOI:10.1016/j.matlet.2013.06.019
[20]
SHARMA K, DUTTA V, SHARMA S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 1-20. DOI:10.1016/j.jiec.2019.06.022
[21]
LI Y, JIANG H Y, WANG X, et al. Recent advances in bismuth oxyhalide photocatalysts for degradation of organic pollutants in wastewater[J]. RSC Advances, 2021, 11(43): 26855-26875. DOI:10.1039/D1RA05796K
[22]
WANG F J, GU Y Y, YANG Z Y, et al. The effect of halogen on BiOX (X = Cl, Br, I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation[J]. Applied Catalysis A:General, 2018, 567: 65-72. DOI:10.1016/j.apcata.2018.09.010
[23]
KOMARNENI S, NOH Y D, KIM J Y, et al. Solvothermal/hydrothermal synthesis of metal oxides and metal powders with and without microwaves[J]. Zeitschrift für Naturforschung B, 2010, 65(8): 1033-1037.
[24]
XU Z K. Synthesis of BiOCl nanosheets with exposed (010) facets via a facile two-phase reaction and photocatalytic activity[J]. Ferroelectrics, 2018, 527(1): 37-43. DOI:10.1080/00150193.2018.1450046
[25]
HU J Y, JING X P, ZHAI L, et al. BiOCl facilitated photocatalytic degradation of atenolol from water: Reaction kinetics, pathways and products[J]. Chemosphere, 2019, 220: 77-85. DOI:10.1016/j.chemosphere.2018.12.085
[26]
NING S B, DING L Y, LIN Z G, et al. One-pot fabrication of Bi3O4Cl/BiOCl plate-on-plate heterojunction with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016, 185: 203-212. DOI:10.1016/j.apcatb.2015.12.021
[27]
SINHA A, DHANJAI, JAIN R, et al. Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review[J]. Microchimica Acta, 2018, 185(2): 89. DOI:10.1007/s00604-017-2626-0
[28]
赵晓伟, 李昊亮, 邱汉迅. 高导热石墨烯/萘甲醇复合薄膜的制备及其在LED上的应用[J]. 上海理工大学学报, 2021, 43(6): 574-579. DOI:10.13255/j.cnki.jusst.20210526002
[29]
DO MINH T, SONG J Z, DEB A, et al. Biochar based catalysts for the abatement of emerging pollutants: a review[J]. Chemical Engineering Journal, 2020, 394: 124856. DOI:10.1016/j.cej.2020.124856
[30]
WANG Q, ZHOU M, ZHANG Y, et al. Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(5): 4294-4300. DOI:10.1007/s10854-017-8376-2
[31]
WANG L B, HU X L. Recent advances in porous carbon materials for electrochemical energy storage[J]. Chemistry-An Asian Journal, 2018, 13(12): 1518-1529. DOI:10.1002/asia.201800553
[32]
RAJAKUMAR G, ZHANG X H, GOMATHI T, et al. Current use of carbon-based materials for biomedical applications-a prospective and review[J]. Processes, 2020, 8(3): 355. DOI:10.3390/pr8030355
[33]
SHEN F, XIONG X N, FU J Y, et al. Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109944. DOI:10.1016/j.rser.2020.109944
[34]
XIA J X, DI J, LI H T, et al. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis[J]. Applied Catalysis B:Environmental, 2016, 181: 260-269. DOI:10.1016/j.apcatb.2015.07.035
[35]
DUO F, WANG Y W, FAN C M, et al. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs[J]. Journal of Alloys and Compounds, 2016, 685: 34-41. DOI:10.1016/j.jallcom.2016.05.259
[36]
GUO W X, ZHANG F, LIN C J, et al. Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange[J]. Advanced Materials, 2012, 24(35): 4761-4764. DOI:10.1002/adma.201201075
[37]
WENG B C, XU F H, XU J G. Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange[J]. Journal of Nanoparticle Research, 2014, 16(12): 2766. DOI:10.1007/s11051-014-2766-7
[38]
SHARMA N, VERES B, DHIMAN P, et al. Mechanistic insight of structural and optical properties of BiOCl in the presence of CNTs and investigating photodegradation of phenol by BiOCl/CNT composites[J]. RSC Advances, 2021, 11(59): 37426-37435. DOI:10.1039/D1RA07003G
[39]
MA D M, ZHONG J B, LI J Z, et al. Preparation and photocatalytic performance of MWCNTs/BiOCl: evidence for the superoxide radical participation in the degradation mechanism of phenol[J]. Applied Surface Science, 2019, 480: 395-403. DOI:10.1016/j.apsusc.2019.02.195
[40]
HOU J H, ZHANG T T, JIANG T, et al. Fast preparation of oxygen vacancy-rich 2D/2D bismuth oxyhalides-reduced graphene oxide composite with improved visible-light photocatalytic properties by solvent-free grinding[J]. Journal of Cleaner Production, 2021, 328: 129651. DOI:10.1016/j.jclepro.2021.129651
[41]
CAI J, XIE Y B, MA C, et al. rGO-modified BiOX (X = Cl, I, Br) for enhanced photocatalytic eradication of gaseous mercury[J]. Applied Surface Science, 2022, 594: 153502. DOI:10.1016/j.apsusc.2022.153502
[42]
GONÇALVES M G, DA SILVA VEIGA P A, FORNARI M R, et al. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange[J]. Science of the Total Environment, 2020, 748: 141381. DOI:10.1016/j.scitotenv.2020.141381
[43]
KASAP H, ACHILLEOS D S, HUANG A L, et al. Photoreforming of lignocellulose into H2 using nanoengineered carbon nitride under benign conditions[J]. Journal of the American Chemical Society, 2018, 140(37): 11604-11607. DOI:10.1021/jacs.8b07853
[44]
YE S J, YAN M, TAN X F, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light[J]. Applied Catalysis B:Environmental, 2019, 250: 78-88. DOI:10.1016/j.apcatb.2019.03.004
[45]
YAN Y, TANG X, MA C C, et al. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity[J]. New Journal of Chemistry, 2020, 44(1): 79-86. DOI:10.1039/C9NJ05219D
[46]
NIU L S, HU Y L, HU H P, et al. Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants[J]. Environmental Research, 2022, 214: 114068. DOI:10.1016/j.envres.2022.114068
[47]
ZHANG Y, SUN B H, JIANG L, et al. Growth of flower-like BiOCl on 3D honeycomb-like N-doped graphitic carbon for greatly enhanced NOx gas sensing performance at room temperature[J]. Microporous and Mesoporous Materials, 2022, 338: 111964. DOI:10.1016/j.micromeso.2022.111964