[1] |
张山山, 王锦标, 苏永要. 纳米多层膜的研究现状[J]. 材料导报, 2014, 28(21): 147-154. |
[2] | |
[3] | |
[4] | |
[5] | |
[6] |
LI W, LIU P, MENG J, et al. Microstructure and mechanical property of TiSiN nanocomposite film with inserted CrAlN nanomultilayers[J]. Surface and Coatings Technology, 2016, 286: 313-318. DOI:10.1016/j.surfcoat.2015.12.033 |
[7] | |
[8] |
BARSHILIA H C, PRAKASH M S, POOJARI A, et al. Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process[J]. Thin Solid Films, 2004, 460(1/2): 133-142. |
[9] |
STACK M M, PURANDARE Y, HOVSEPIAN P. Impact angle effects on the erosion-corrosion of superlattice CrN/NbN PVD coatings[J]. Surface and Coatings Technology, 2004, 188-189: 556-565. DOI:10.1016/j.surfcoat.2004.07.075 |
[10] |
YIN D Q, YANG Y, PENG X H, et al. Tensile and fracture process of the TiN/VN interface from first principles[J]. Ceramics International, 2014, 40(9): 14453-14462. DOI:10.1016/j.ceramint.2014.07.016 |
[11] |
NORDIN M, LARSSON M, HOGMARK S. Mechanical and tribological properties of multilayered PVD TiN/CrN[J]. Wear, 1999, 232(2): 221-225. DOI:10.1016/S0043-1648(99)00149-0 |
[12] |
FALLMANN M, CHEN Z, ZHANG Z L, et al. Mechanical properties and epitaxial growth of TiN/AlN superlattices[J]. Surface and Coatings Technology, 2019, 375: 1-7. DOI:10.1016/j.surfcoat.2019.07.003 |
[13] | |
[14] |
BARSHILIA H C, PRAKASH M S, JAIN A, et al. Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films[J]. Vacuum, 2005, 77(2): 169-179. DOI:10.1016/j.vacuum.2004.08.020 |
[15] |
MAEDEH F, FAKHREDDIN A, ALIREZA K. Influence of thickness on adhesion of nanostructured multilayer CrN/CrAlN coatings to stainless steel substrate[J]. Surfaces and Interfaces, 2018, 13: 178-185. DOI:10.1016/j.surfin.2018.09.009 |
[16] |
LI P, CHEN L, WANG S Q, et al. Microstructure, mechanical and thermal properties of TiAlN/CrAlN multilayer coatings[J]. International Journal of Refractory Metals and Hard Materials, 2013, 40: 51-57. DOI:10.1016/j.ijrmhm.2013.01.020 |
[17] |
QIU Y X, ZHANG S, LEE J W, et al. Self-lubricating CrAlN/VN multilayer coatings at room temperature[J]. Applied Surface Science, 2013, 279: 189-196. DOI:10.1016/j.apsusc.2013.04.068 |
[18] |
YE Y W, WANG Y X, MA X L, et al. Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater[J]. Diamond and Related Materials, 2017, 79: 70-78. DOI:10.1016/j.diamond.2017.09.002 |
[19] |
XU Z Y, SUN H, LENG Y X, et al. Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J]. Applied Surface Science, 2015, 328: 319-324. DOI:10.1016/j.apsusc.2014.12.041 |
[20] | |
[21] |
DASGUPTA T, WAGHMARE U V, UMARJI A M. Electronic signatures of ductility and brittleness[J]. Physical Review B, 2007, 76(17): 174110. DOI:10.1103/PhysRevB.76.174110 |
[22] |
SANGIOVANNI D G, HULTMAN L, CHIRITA V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration[J]. Acta Materialia, 2011, 59(5): 2121-2134. DOI:10.1016/j.actamat.2010.12.013 |
[23] |
SANGIOVANNI D G, CHIRITA V, HULTMAN L. Toughness enhancement in TiAlN-based quarternary alloys[J]. Thin Solid Films, 2012, 520(11): 4080-4088. DOI:10.1016/j.tsf.2012.01.030 |
[24] | |
[25] |
POSTOLNYI B O, BERESNEV V M, ABADIAS G, et al. Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness[J]. Journal of Alloys and Compounds, 2017, 725: 1188-1198. DOI:10.1016/j.jallcom.2017.07.010 |
[26] | |
[27] |
MUSIL J, ZEMAN P, HRUBY H, et al. ZrN/Cu nanocomposite film-a novel superhard material[J]. Surface and Coatings Technology, 1999, 120-121: 179-183. DOI:10.1016/S0257-8972(99)00482-X |
[28] | |
[29] |
HE J L, SETSUHARA Y, SHIMIZU I, et al. Structure refinement and hardness enhancement of titanium nitride films by addition of copper[J]. Surface and Coatings Technology, 2001, 137(1): 38-42. DOI:10.1016/S0257-8972(00)01089-6 |
[30] |
MUSIL J, LEIPNER I, KOLEGA M. Nanocrystalline and nanocomposite CrCu and CrCu-N films prepared by magnetron sputtering[J]. Surface and Coatings Technology, 1999, 115(1): 32-37. DOI:10.1016/S0257-8972(99)00065-1 |
[31] |
KELLY P J, LI H, BENSON P S, et al. Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings[J]. Surface and Coatings Technology, 2010, 205(5): 1606-1610. DOI:10.1016/j.surfcoat.2010.07.029 |
[32] |
JU H B, YU D, YU L H, et al. The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN-Ag films[J]. Vacuum, 2018, 148: 54-61. DOI:10.1016/j.vacuum.2017.10.029 |
[33] | |
[34] | |
[35] | |
[36] | |
[37] | |
[38] |
VEPŘEK S, HAUSSMANN M, REIPRICH S, et al. Novel thermodynamically stable and oxidation resistant superhard coating materials[J]. Surface and Coatings Technology, 1996, 86-87: 394-401. DOI:10.1016/S0257-8972(96)02988-X |
[39] |
PEI Y T, CHEN C Q, SHAHA K P, et al. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering[J]. Acta Materialia, 2008, 56(4): 696-709. DOI:10.1016/j.actamat.2007.10.025 |
[40] | |
[41] |
ZHANG Y D, HUANG H, ZHANG K, et al. Crystallization of MgAl 2O 4 and its effect on strengthening-toughening behavior in TiAlN/MgAl 2O 4 nanomultilayers
[J]. Vacuum, 2017, 146: 11-14. DOI:10.1016/j.vacuum.2017.09.027 |
[42] | |
[43] |
YALAMANCHILI K, SCHRAMM I C, JIMÉNEZ-PIQUÉ E, et al. Tuning hardness and fracture resistance of ZrN/Zr 0.63Al 0.37N nanoscale multilayers by stress-induced transformation toughening
[J]. Acta Materialia, 2015, 89: 22-31. DOI:10.1016/j.actamat.2015.01.066 |
[44] |
WANG C, HAN J, PUREZA J M, et al. Structure and mechanical properties of Fe 1-xMn x/TiB 2 multilayer coatings: possible role of transformation toughening
[J]. Surface and Coatings Technology, 2013, 237: 158-163. DOI:10.1016/j.surfcoat.2013.08.014 |
[45] | |
[46] | |
[47] | |
[48] |
ABE O, TAKATA S, OHWA Y. Toughening of NiAl-alumina composites by self-constructed compressive surface layers under oxidation[J]. Journal of the European Ceramic Society, 2004, 24(2): 489-494. DOI:10.1016/S0955-2219(03)00201-2 |
[49] |
BENEGRA M, LAMAS D G, DE RAPP M E F, et al. Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering[J]. Thin Solid Films, 2006, 494(1/2): 146-150. |
[50] |
WANG H L, ZHANG S, LI Y B, et al. Bias effect on microstructure and mechanical properties of magnetron sputtered nanocrystalline titanium carbide thin films[J]. Thin Solid Films, 2008, 516(16): 5419-5423. DOI:10.1016/j.tsf.2007.07.022 |
[51] |
WANG Y X, ZHANG S, LEE J W, et al. Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering[J]. Surface and Coatings Technology, 2012, 206(24): 5103-5107. DOI:10.1016/j.surfcoat.2012.06.041 |
[52] | |
[53] |
WANG Y X, ZHANG S, LEE J W, et al. Toward hard yet tough CrAlSiN coatings via compositional grading[J]. Surface and Coatings Technology, 2013, 231: 346-352. DOI:10.1016/j.surfcoat.2012.03.036 |
[54] | |
[55] |
KINDLUND H, SANGIOVANNI D G, PETROV I, et al. A review of the intrinsic ductility and toughness of hard transition-metal nitride alloy thin films[J]. Thin Solid Films, 2019, 688: 137479. DOI:10.1016/j.tsf.2019.137479 |
[56] |
WANG Y, FU Z M, ZHANG X L, et al. Understanding the correlation between the electronic structure and catalytic behavior of TiC(001) and TiN(001) surfaces: DFT study[J]. Applied Surface Science, 2019, 494: 57-62. DOI:10.1016/j.apsusc.2019.07.142 |
[57] |
MADAN A, WANG Y Y, BARNETT S A, et al. Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices[J]. Journal of Applied Physics, 1998, 84(2): 776-785. DOI:10.1063/1.368137 |
[58] |
GROSSMAN J C, MIZEL A, CÔTÉ M, et al. Transition metals and their carbides and nitrides: trends in electronic and structural properties[J]. Physical Review B, 1999, 60(9): 6343-6347. DOI:10.1103/PhysRevB.60.6343 |
[59] |
JHI S H, IHM J, LOUIE S G, et al. Electronic mechanism of hardness en- hancement in transition-metal carbonitrides[J]. Nature, 1999, 399(6732): 132-134. DOI:10.1038/20148 |
[60] |
SANGIOVANNI D G, HULTMAN L, CHIRITA V, et al. Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys[J]. Acta Materialia, 2016, 103: 823-835. DOI:10.1016/j.actamat.2015.10.039 |
[61] |
BALASUBRAMANIAN K, KHARE S V, GALL D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides[J]. Acta Materialia, 2018, 152: 175-185. DOI:10.1016/j.actamat.2018.04.033 |
[62] |
EDSTRÖM D, SANGIOVANNI D G, HULTMAN L, et al. Effects of atomic ordering on the elastic properties of TiN- and VN-based ternary alloys[J]. Thin Solid Films, 2014, 571: 145-153. DOI:10.1016/j.tsf.2014.09.048 |
[63] |
SANGIOVANNI D G, CHIRITA V, HULTMAN L. Electronic mechanism for toughness enhancement in Ti xM1-xN ( M=Mo and W)
[J]. Physical Review B, 2010, 81(10): 104107. DOI:10.1103/PhysRevB.81.104107 |
[64] | |
[65] |
DU S X, ZHANG K, WEN M, et al. Crystallization of SiC and its effects on microstructure, hardness and toughness in TaC/SiC multilayer films[J]. Ceramics International, 2018, 44(1): 613-621. DOI:10.1016/j.ceramint.2017.09.220 |
[66] |
KINDLUND H, SANGIOVANNI D G, MARTINEZ-DE-OLCOZ L, et al. Toughness enhancement in hard ceramic thin films by alloy design[J]. APL Materials, 2013, 1(4): 042104. DOI:10.1063/1.4822440 |
[67] |
JHI S H, LOUIE S G, COHEN M L, et al. Vacancy hardening and softening in transition metal carbides and nitrides[J]. Physical Review Letters, 2001, 86(15): 3348-3351. DOI:10.1103/PhysRevLett.86.3348 |
[68] |
SKALA L, CAPKOVA P. Nitrogen vacancy and chemical bonding in substoichiometric vanadium nitride[J]. Journal of Physics: Condensed Matter, 1990, 2(42): 8293-8301. DOI:10.1088/0953-8984/2/42/007 |
[69] |
SHIN C S, GALL D, HELLGREN N, et al. Vacancy hardening in single-crystal TiN x(001) layers
[J]. Journal of Applied Physics, 2003, 93(10): 6025-6028. DOI:10.1063/1.1568521 |
[70] |
KINDLUND H, SANGIOVANNI D G, LU J, et al. Vacancy-induced toughening in hard single-crystal V 0.5Mo 0.5N x/MgO (001) thin films
[J]. Acta Materialia, 2014, 77: 394-400. DOI:10.1016/j.actamat.2014.06.025 |
[71] |
WANG H, ZENG H Z, LI Q K, et al. Superlattice supertoughness of TiN/ MN (M=V, Nb, Ta, Mo, and W): First-principles study
[J]. Thin Solid Films, 2016, 607: 59-66. DOI:10.1016/j.tsf.2016.03.061 |